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I. Introduction.

We consider a spinning spacecraft with the ZN axis (nominal spin axis) at an angle  to the
direction of the Z axis of an inertial coordinate system.  For some purposes, it is useful to think
of the Sun as being along the Z axis.  In the spacecraft coordinate system, the nominal observing
direction is along the XN axis.  See Fig. 1 for the definition of the Euler angles that connect the
two systems.    

In Section II, we consider rotation dynamics: equations of motion and small angle
perturbations due to an impulse of torque.  We find that the nominal spin axis and the angular
momentum vector are shifted (rotated) and an Eulerian nutation is excited by the impulse.  Given
these results, in Section III we investigate the rotational kinematics and corresponding
consequences for the motion of a star image across the detector plane of a telescope rotating with
the spacecraft.  Similarly, in Section IV, the results of Section II are applied to the kinematics of
precession and the overlap of observing bands.  In Section V, we look at two special cases of
spacecraft operations.  In the first, a series of small torsional impulses precess the spacecraft.  In
the second, a pair of larger torsional impulses cause a change of spin axis orientation and,
following that, the spacecraft is allowed to rotate without perturbation for an extended period. 
The further complications due to imperfect control of the torsional impulses (gas jet firings) are
not considered, but would need to be factored into any analysis intended to select the method of
precessing the spacecraft.  Finally, in Section VI, the previously obtained results are applied to
the FAME mission.

II. Rotation dynamics.

Following Goldstein1 (p. 165), the Lagrangian for the spacecraft rotation is
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Figure 1.  Rotations defining the spacecraft coordinate system (XN YN ZN) in the (X Y Z) frame. 
The dashed arc is 90 degrees long and connects the ZN axis and the precession node, D, which is
shown as a dashed line in XN-YN plane.  I passes through the Z axis when the precession is
around Z.  (Parenthetic labels refer to intended uses, which may not be a correct description in
all cases.)
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where N is a torque such that for N > 0,  tends to increase, I1 = I2, and I3 is around the nominal
spin axis.  In the chosen spacecraft coordinates, the moment of inertia tensor is diagonal.  For the
analysis below, the torque will be zero except during brief intervals.  Lagrange’s equation is
applied for  and  as in Goldstein’s Eqs 5-46 and 5-47



2 The period is constant because there is no component of torque in the ZN direction.  In a
more complete analysis of the spacecraft, we would consider smaller effects such as a
mispointing of the gas jets, which would cause the spin rate to change each time the spacecraft
received an impulse, or a spacial variations in the reflectivity of the shield, which would give rise
to a spin rate that would vary with the rotation phase with respect to the Sun direction.

3 In a more complete analysis, the thruster profile would be considered.  For present
purposes, it is sufficient to treat the thruster as producing an impulse of force.
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where a and b are constants of the motion.  The rotation period, , is also constant.2 P' 2 / zN
By combining Eqs 2 and 3, we obtain Goldstein’s Eq 5-50

Next, Lagrange’s equation is applied for  to yield

Initially (i.e., at t = 0), and N are all zero,   Given these initial conditions,0 , 0, ' 0, and ' 0.
one finds from Eq 4 that   From Eq 5, must also be zero at t = 0.b' a cos 0.

¨

Consider a kick, an impulsive torque caused by a thruster firing.3  Initially the spacecraft
is spinning around the ZN axis, and is neither precessing nor nutating.  The impulse is
characterized by

where M0 / Nn n is an impulse of torque and thus the moment of an impulse of force, and Nn and
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n are a nominal torque and its duration, respectively.  M0 is along the XO axis (Fig. 1), and thus
has no component along the spin axis.  Then  , where J0 is the impulse of force that,M0 ' ZN^ × J0
acting on a unit arm along the spin axis, produces the required impulse of torque. ( J0 is in a
direction that pushes the spin axis away from the Z axis.)   During the short interval 0<t<
(where  << P), the quantities will not change significantly.  (This is the impulsive, , and0
approximation.)  Thus, as a result of the thruster firing,

which we treat in the limit as 60.

We next investigate the small-amplitude variation of  and  starting at t = , with the
conditions following the kick.  If we neglect second-order terms, Eq 5 takes the form

Eqs 4 and 8 together suggest the following approximation

where is the constant of integration, determined below to be zero.  By applying the first ofc
these to Eqs 4 and 8 , we obtain

where use has been made of   By applying the second of Eqs 9, we find  = a.  Sinceb' a cos 0.
at t = ,  it must also be that  = 0.  By incorporating Eq 7, we obtain¨ ' 0,

where the constant of integration is set by the requirement that as t 6 0.6 0

We next apply Eq 11 to Eq 4 and use to obtainb' a cos 0
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which can be integrated to yield

In Eq 13, the constant of integration was set by the requirement that as t 6 0.  Thus,6 0
following the kick, the ZN axis moves in a circle of radius M0/aI1 that passes through the initial
position and is centered on a point Q displaced in the  direction by a distance M0/I1a.  (In
describing a radius and a distance, one can refer to central angles of the spherical coordinate
system or to distances, which are properly described using a local Cartesian coordinate system
such as the one discussed in connection with Fig. 2.  The extra factor of  in Eq 13 is an1/sin 0
artifact of the spherical coordinate system.)  The point Q represents the location of the angular
momentum vector of the spacecraft following the kick.  The angular momentum had coincided
with the ZN axis before the kick.

III.  Rotational kinematics and the motion of the view direction.

The motion of the XN axis around the ZN direction is the nominal spin, . zN '
·
% 0 cos

However, there is also a motion of the XN axis around the YN direction, which causes the star
images to move diagonally with respect to the nominal track in the camera.  This is described by

where .  By using Eqs 11 and 12, we obtain' 0 %
·

t



4 The amplitude of this periodic component of rotation is simply the torsional impulse
divided by the corresponding principal moment of inertia: .  Just after the kick, weyN

' M0 /I1
find that the angular momentum vector has moved to a new position (in inertial space), and the
ZN axis has been given the motion associated with .yN
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where  is an initial phase.4  There is a corresponding cosine term for xN
.  The spin vector moves

around the ZN axis in the rotating spacecraft frame.  For I3 > I1, the spin vector is on the far side of
Q from ZN.  (For the rotation of the Earth, the corresponding motion is called the Chandler
wobble.)

The angle (with respect to the XN-YN plane) at which the spacecraft rotation causes the
stars to move across the field of view is .  Equations 2 and 15 show that this. tan ' yN

/ zN
angle varies over the range . This path deviation sets one±

-
, and that

-
' M0 I3 / I 2

1 a' M0 / I1 zN
practical limit to the acceptable rate of spacecraft precession because of the effective lateral
smearing of the target stars on the detector.

IV.  Kinematics of precession and the overlap of observation bands.

Smooth precession may be described by a constant rate of change of , see Fig. 1.  This
rate may be usefully projected along two axes, ZN and the line of nodes, D . ( 0 cos ) ( 0 sin )
The former is a component of the spin rate, as seen in Eq 2.  The latter causes successive
rotations of the spacecraft to trace out shifted observing bands.  If the change of  from one
rotation to the next is , then the separation of band centers is about  sin( ) sin( - D).  
Thus, for an observing band of width W, the maximum change in  that will not leave gaps in the
sky coverage is W/sin().  

One of the early SAO-developed optical designs for FAME had W = 0.75 deg and  = 45
deg.  For this case, the maximum gap-free precession rate is about 1 deg per revolution.  At 12
revolutions per day (the nominal associated with that design), a precession cycle would take 30
days.  A longer precession cycle would permit overlap at the part of the observing band 90 deg
from the precession node.  Thus, the nominal precession rate of once per 60 days yields a 50%
overlap at a point 90 deg from D, and an 84% overlap of area between successive observation
bands.

The present nominal optical design has W = 2.2 deg and  = 45 deg.  The precession rate
is limited by lateral smear of the star (bound on ) to about  = 0.5 deg per spacecraft rotation. 

-

This leads to multi-revolution overlap, even at 90 deg from the line of nodes.
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Figure 2.  Motion of the spacecraft ZN axis (series of arcs) as a result of a series of
kicks (torsional impulses, M, and the corresponding force impulses, J).  The long
straight line is the nominal precession trajectory, which in Fig. 1 would be a “small
circle” with center at Z and passing through ZN.  [Figure 2 uses a local Cartesian
coordinate system: abscissa, /sin 0; ordinate, .]
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V.  Spacecraft operations.

In the geometry used above, the kick is such as to increase the angle between the Sun
direction and the spacecraft ZN axis.  Consider a torsional impulse , where Ja acts atMa ' ZN^ × Ja
an angle  to the desired average direction of precession, as shown in Fig. 2.  (Up to now, we had
used a kick geometry characterized by  = /2.)  After a nutation by 2, we apply a kick

 where Jb acts normal to the desired average direction of precession; the latter startsMb ' ZN^ × Jb
a new nutation, which has the same shape as the old nutation, but is displaced in the  direction. 
Then,

where T is the interval between kicks.  From these, we obtain the ratios
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where the former is the impulsive torque per change of , and the latter is the average precession
rate.  Since , the range of swing of , depends on Ma and not on , for a fixed average

-

precession rate,  % .  Letting  increases  by a factor of /2 . 1.57 over the value
-

/ sin ' /2
-

for small .  (I see no reason for operating with  greater than about /2.)  Note that using torque
produced by radiation pressure to precess the spacecraft yields the same  as the small-  case

-

(i.e., with repeated small kicks).  However, the radiation-pressure torque is smooth, and thus does
not break the rotation into segments requiring additional parameters to be estimated.

We next consider an alternative scheme in which there are a pair of large kicks M
R
 in

nearly opposite directions, separated by a short interval T = P << P, where P is the period of
rotation.  The spacecraft is precessed during the short interval, during which  may be too large
for taking data.  Then, for a longer interval (e.g., P - T), the spacecraft spins (about the ZN axis)
with  = 0.  The ratio of total impulsive torque to corresponding change of  is

where  For small , sin  .  and ' I3 / I1.

Thus for example, for  =0.1 (and I3 = 1.25 I1), the required kick is increased a factor of 2.5 and
the observing time is reduced 10% compared to the case of small  and repeated (Mb) kicks. 
These disadvantages must be seen in comparison to the gain in coherence discussed in TM98-04. 
Table 1 of that memo (which contains results from TM98-02) shows that the coherence of the
spiral reduction is increased 4.4 fold by changing from an average of six spans per rotation to an
average of one span per rotation: ( ) / 0 is reduced from 2.9 (unacceptable) to 0.66 (barely
acceptable).  By having only one span in the six-rotation spiral, ( ) / 0 became 0.26, and a
further two-fold reduction was shown by increasing the spiral and span lengths by a factor of
four.  This level for ( ) / 0 seems likely not to degrade the mission accuracy.

We next consider a strategic approach to the two-kick scheme described above.  For this
purpose, we consider the spacecraft to have two observing directions, equally spaced (in opposite
directions) by a modest angle (less than 1 radian) from the XN axis.  I offer the following
hypothesis, which would need to be tested by appropriate simulations:

It would be advantageous to tailor the timing of the kicks so that at their mean epoch the
XN axis is centered on one of the areas of observational overlap between successive
rotations.  This should facilitate tying together in the data analysis both (1) the two
successive spans and (2) the corresponding points of the rotation of the two observing
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directions (i.e., to yield closure) for each span.  This overlap is greatest near the
precession node, shown in Fig. 1 as a dashed line in the XN-YN plane, and at an angle D

from the XO axis, where D = 90 deg when the precession is around the Z axis.  Thus, the
pair of big kicks are timed so that at their respective epochs the values of - D are of
equal magnitude and opposite sign.  This approach disrupts the observations in the region
that locally has the maximum overlap and therefore degrades the observations of the stars
that are locally observed most redundantly.

Following this hypothesis, one would expect to see the gas jets firing at the same rotation
phase ( ) during each rotation.  However, there is an alternative approach that I believe would be
advantageous.  For this approach, the complete cycle requires three rotations during which there
are two sets of (two) gas-jet firings.  The cycle starts with a pair of gas-jet firings in accord with
the above hypothesis.  After one and a half rotations (from the initial firing) there is another pair
of gas-jet firings.  These occur at 180 deg (in ) from the first set.  Finally, the spacecraft
completes its three rotations, returning to the rotation phase at which the first gas-jet firing
occurred, and the cycle repeats.

With this approach, the disruptions of the observations are divided between the northern
and southern hemispheres, and the disrupted regions are re-observed during the next two
rotations.   Because of this arrangement, the interval between the two jet firings can be extended,
thus decreasing the gas usage.  The added burden of gas use associated with this approach is
determined by combining Eqs 17, 18 and using ' I 3 / I1

where 2MR/Mb is the ratio of required gas use rates assuming identical mean precession rates and
the availability of jets mounted in the desired direction.  For example, if I3/I1 = 5/4 and the gas-jet
firings are separated by 90 deg (  = 0.25), then the gas use is increased by a factor of 1.20 as
compared to a series of firings as described above.  For a separation of 144 deg (  = 0.4), there is
no increase in gas use.

For a fixed set of gas jets, the torque would be produced by firing two of the jets to
produce the required vector sum.  This approach yields a trade between the number of jets and
the efficiency of the process.  A plausible number of jets, ignoring the question of redundancy, is
five.  In an alternative approach, a smaller number of jets (say three) are mounted on a turret that
is able to rotate by a modest angle (say ± 90 deg), so as to permit fine control of the direction of
the thrust.  This use of turret-mounted jets adds the cost and complexity of a mechanism, and is
thus unlikely to be justified.



5 Gilmore, in an invited paper on GAIA at SPIE Conference 3350 (Kona, 3/98), said that
they were planning to use ion engines to precess the spacecraft.
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VI. Discussion.

Here we consider the requirements for spacecraft rotation imposed by the FAME mission. 
It is intended that FAME will use a version of the HIPPARCOS observing pattern in which the
spacecraft spins to allow the observation of stars in a band at right angles to the spin axis; the
spin axis slowly precesses around the Sun direction.  That precession could be either continuous
or in discrete steps.  Independent of the mechanism used to produce the precession, while it is
taking place, it will cause the targets to move along the detector at an angle that will vary with
the rotation phase of the spacecraft.

Continuous precession (driven by continuously applied torque) has the advantage that the
observations are not segmented by attitude-control events into (short) spans.  Such segmentation
would adversely affect the information return from the mission.  There are several possible ways
of producing continuous torque.  Magnetic torque bars can operate only at low altitude, and
cannot operate in all directions.  Rotating-wheel systems are believed to produce too much
vibration to be applicable to an astrometric mission.  (This assumption should be tested at some
time before the design is frozen.)  Adjustable, ultra-low thrust, gas jets are not presently
available, although an interesting system has been described using heated Palladium and
diffusing H2.

5  Solar radiation pressure acting on a large shield can produce the desired torque. 
However, at low rotation rates (e.g., two hours per revolution) with a large shield, the shape of
the shield would need to be adjusted precisely to reduce the torque (10 to 100 fold) to an
acceptable level.  For higher spin rates, the shape adjustment is not so critical.

If impulsive gas jets are to be used to affect the precession, then there are two viable
scenarios.  In the first, there are a series of  attitude-control events, say five or more spaced more
or less evenly around one rotation of the spacecraft.  In the second, there are two attitude-control
events per spacecraft rotation (or per a larger multiple of ½ rotation), but these are relatively
large, and likely preclude observing between the events.  The latter approach uses significantly
more ACS fuel than the former, but permits most of the observing to take place from a non-
precessing spacecraft.  Assuming a reasonable ratio of principal moments of inertia, it would not
be possible to have only a single attitude-control event per rotation.

A further complication of the use of gas jets is that the magnitude of each firing has a
variance, and the direction of action of each jet will deviate from that intended.  The latter would
result in the jets causing a change in the spin rate.  If severe, this would cause a loss of precise
data until the spin rate could be determined from crudely-taken data, and the CCD clock rate
adjusted accordingly.  This would be an undesirable mode, but the corresponding loss of
information may need to be quantified before the trade is made among methods of precessing the
spacecraft.
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